

Software architecture in an agile context becomes more dynamic,
smaller-scaled and more distributed. This cheat sheet summarises
the most important aspects.

Agile Architecture

IN THIS ISSUE

• How does a central
agile idea influence
architectural work?

• How much up-front
architectural work is
reasonable?

• How mature is your
itera -tive architectural
work?

• How can architecture
help to scale agile
methods?

Conceptual development
expertise in a condensed
format

6
NO.

https://architektur-spicker.de

Free pdf-Download of the architecture

FIND MORE CHEAT SHEETS ONLINE:

cheat sheet collection:

www.architektur-spicker.de

1

 What’s it about? (challenges / goals)

 An agile mindset creates cross-functionality, flexibility, and the ability
to work iteratively. How does this change architectural work?

 Agile projects are lean – also in regard to up-front work. How can you
work on the architecture in a well-founded and focused fashion?

 Agile methodologies are short on how to do software architecture.
How can you deal with architectural tasks and the role of the architect?

 Communication and ad-hoc decisions are more difficult in large scale
development environments. How can agile architectural work be done
in a reasonable fashion?

 Fundamentals on agile ideas & architecture

The top 3 links for an agile mindset:

• The principles of the agile manifesto: bit.ly/2xWsrEh

• The complex area of the Cynefin framework: goo.gl/ZNt87M

• The OODA loop for quick development processes and feedback: goo.gl/exBftJ

Central ideas on agility Relevant architectural aspects

Iterative approach

No big design upfront, lean architecture vision instead
methodological aspects
• Described in more detail in

Vorgehensmuster für Softwarearchitektur
Carl Hanser, 2. Auflage 2015, Stefan Toth

Architectural tasks backlog

Decide at the last responsible moment

Fine-granular
feedback

Tests quality aspects

Periodically reflect quality goals

Continuously identify technical debt

Cross-functionality/
Team respnsibility

Distribute the architect’s role

Consensus decisions

Principles guiding architectural directions

Transparency &
direct communication

Informative workplace incl. architecture wall

Ad-hoc architecture workshops

Communities of practice

Responsiveness/
flexibility

Vertical architecture & domain focus technical aspects
• Microservices/Self-Contained Systems
• Containerization
• Public/Private Cloud (see also Cheat-Sheet

Nr.5; currently only available in German)

Deep technical isolation

Self-Service platforms and infrastructure

Technical excellence and focus on maintainability

Product orientation

Evolutionary achitecture organisational aspects
• Long-term focus on certain topics
• Soft governance
• see also Cheat-Sheet p. 4

Soft architecture standards and eventual integrity

Achieve anti-viscosity in architecture implementation es
p

ec
ia

lly
 in

te
re

st
in

g
in

 s
ca

le
d

en

vi
ro

n
m

en
ts

 (l
ar

ge
 s

ca
le

p

ro
je

ct
s,

 s
tr

o
n

g
d

yn
am

ic
s)

3
LINKS

 TOP-

What do central agile ideas from these sources mean in regard to architectural work?
 Agile architecture is driven by requirements, the effort spent is adequate to the given problem, it is influenced
by current insights into collaboration and ways of working and it is interwoven with iterative software development.

architecture
CHEAT SHEET

 Architecture work in iterations

6
NO..

Conception and preliminary work

https://architektur-spicker.de

Work done in early iterations should include useful functionality and touch as many architectural approaches
as possible. It is important to touch those architectural approaches at least a little bit in order to falsify them as
early and as painlessly as possible. Foundation: The “Walking Skeleton”.

Quality goals should be used as the basis for planning
and discussing further product development with the
product owner. A high-level checklist to asses iterative
architectural work maturity:

 Quality scenarios:
See also Cheat-Sheet
Nr. 4 – Architecture-
Reviews

„A Walking Skeleton is a tiny imple-
mentation of the system that per-
forms a small end-to-end function. It
need not use the final architecture,
but it should link together the main
architectural components. The ar-
chitecture and the functionality can
then evolve in parallel.“

Alistair Cockburn

1. Leaner approach: Details are decided iteratively and risk-oriented.
Pending questions are OK if these can be processed in a planned manner.

2. Candidates, not decisions: Final decisions only in non-innovative/known areas
without risk. “Candidates“ are communicated.

 The top 2 differences in contrast to Big Design Up Front (BDUF):

A very lean compilation of architectural drivers (What?) and ideas (How?)
as counterpart to a business-oriented product vision.

Architecture Vision

Level 5

Level 4 All architecture
activities are
motivated by quality
goals (incl. technical
debt)

Level 3 Quality scenarios
become acceptance
criteria or are kept
as dedicated stories
in the product
backlog

Level 2 Quality scenarios
support communi-
cation with stake-
holders and the
product owner

Level 1 Explicit events asses
the achievement of
quality goals

Coarse quality
statements are
known to the team
and are considered
(e.g. in reviews)

(Non-functional) tests and CI/CD practices provide feedback regarding achieved objectives:
coarse → finegrained

Backlog

 Foundation for architectural work – importance is independent of context!

 System context (boundary)

 Constraints

 Quality requirements (prioritised)

 Risks (business and technical)

Complexity drivers
• High quality requirements

• Tight project constraints
(time, budget)

• Large development team

• High spatial distribution

• New technologies

• Little experience in the
solution space

• Slim technical framework

• Many (external)
dependencies

• Deviation from standard
architecture

• Conflicting objectives

What?

 First solution ideas* - amount and detail depending on the context!

 Basic technologies (incl. frameworks etc.)

 Concepts, patterns, principles

 Domain-specific structure (+ domain model)

 Solutions for coordination and communication

 Solutions for integration and interfaces

 Persistence strategies and data-model

How?

B
ac

kl
o

g
p

ri
o

ri
ti

sa
ti

o
n

: A
s

m
an

y
ch

ec
ke

d
 b

ox
es

 a
s

so
o

n
 a

s
p

o
ss

ib
le

Solutions for coordination &
communication
 ……
 ……

Solutions for integration and interfaces
 ……
Persistence strategies and data-model

 ……
 ……

Platform- and infrastructure elements
 ……

Domain-specific structure
 ……

 ……
Concepts, patterns and principles

 ……
 ……

Basic technologies and
frameworks
 ……
 ……
 ……

Architecture approaches

2

* The goal is to be able to make a first effort estimation for the system (macro level) –
NOT the final specification!

architecture
CHEAT SHEET

no ‚named‘ architect Architecture stewards Architecture owner classic architect

A B

C

The architect’s role
Apart from the classical software architect, there are several options to collaboratively implement the architect’s role.
The “right” choice is to be determined according to the environment and problem – “Factors influencing the architect’s role”.

• project size: many teams
• co-location: distributed
• businessdomain: complex, new
• technical domain: hard, challenging, new

• architecture base: green field
• external dependencies: high

• familiarity: first project in this setup
• experience: many inexperienced developers

• discipline: little responsibility of individuals
• org. structure: hierarchical, top-down
• context: regulated or heavily standardized
• goals: conflicting architecture goals in conflict

(also with project goals)

	 Factors	influencing	the	architect‘s	role

The biggest agile challenges for software development with
5 teams and more are maintaining responsiveness and
well-distributed accountability without installing bottlenecks.
Organisational/methodical aspects of agility have to be
combined with the right technical/architectural concepts in
order to master these challenges:

The ADES framework (Agile Delivery and Evolutionary
Systems) interweaves technical and organisational aspects
in order to effectively generate agility in a larger product and
company context: www.ADES-Framework.org

„The technical architecture is hugely important
for the way we are organized. The organizational
structure must play in harmony with the technical
architecture. Many companies can’t use our way
 of working because their architecture won’t
allow it.“

Henrik Kniberg (about Spotify)

all0

main reasons:
project size, co-location,

business domain,
technical domain

main reasons:
base architecture,

 external dependencies,
familiarity, experience

main reasons:
discipline,

organisational structure,
context, goals

3

Scaling agile methods & evolutionary architectures

Staying more on the left side of the graphics allows to act more dynamically without neglecting architecture work.
Tactics and practices to achieve this:

 Informative workplace: Visible architectural artefacts (e.g. architecture wall) as basis for communication
 Group decision: Consent-based decision-making process to increase sense of accountability
 Repeated reflection: Explicit events check the achievement of quality and synchronize software developers.
 Architectural communities: Knowledge is shared in dedicated architecture events.
 Architectural work in the backlog: Architectural work is made transparent and can be shared by using quality scenarios
within the backlog.

 Architectural principles: Communicate important insights and mindset – increase the integrity of architectural work.
 Qualitative, automated tests: Feedback about achievement of architectural goals creates real accountability.

https://architektur-spicker.de

We look forward to your feedback: spicker@embarc.de

https://www.embarc.de
info@embarc.de

https://www.sigs-datacom.de
info@sigs-datacom.de

The left half of the ADES-Framework.

https://architektur-spicker.de

4

Further information
 Practices for Scaling Lean and Agile Development: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum, Craig Larman, Addison Wesley 2010

 ADES Framework: www.ADES-Framework.org

 The top 3 links for an agile mindset (see Page 1)

 Spotify Culture: https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1

 Evolutionary approaches are predominantly suitable for new topics, endeavors with high innovation
or market pressure: the home of agile approaches.

Important concepts of agile architecture
assigned to the phases:

Evolutionary observation of an architectural question over time:

Last responsible moment: Decisions are made
as late as reasonably possible in order to expand
the learning window and avoid costly errors
across a broader context.

Verticalisation/Technical isolation: Lower
technical standardisation makes it possible to
test new approaches in real environments with
small isolated business impact.

Anti-Viscosity: The currently best solution is
simplified in its application so that developers
do not deviate due to laziness. Examination of
achieving goals rather than hard governance.

Communities of Practice: Sharing among
developers and dealing with trends is especially
important if architectural approaches are
beyond their zenith.

Eventual Integrity: Deviation and innovation
are always permitted. Ideas distributed via
communities that assert themselves against
viscosity ultimately lead to integrity.

Learning window Soft “standard” Isolation Replacement

Detection of need for
action (Quality deficit,
new options, ...)

Commitment and broad commu-
nication (Risks eliminated, first
implementation successes)

Explicit opening for innovation
(promoted communication of
new ideas) Limitation of

applicability
(Naming niches,
costs / benefits)

New
architectural
approachArchitectural

approach

Time

Adoption/distribution

Evolutionary systems/architecture Counter-model: project-oriented development

Product focus: A long running product delivers
the solution to a problem

Project focus: Temporary system development, followed by
maintenance, ...

Stable Teams, that are linked to
the problem/product

Changing teams for
development and maintenance.

Technically adaptable architecture base
(not completely new developments)

Fixed architecture base
for a project / maintenance cycle.

Deep technical decoupling between (sub-)
domains for small-scale change.

Technical standardization and harmonization
(not a must but common)

Eventual Integrity – Integrity of the solution
is given when good ideas prevail

Standards First – Specifications are fixed after analysis,
afterwards no deviation / learning

Consistent quality over time. Fluctuating quality over project / maintenance cycle

Constant investment into the problem. Investment via projects and time-bound budgets

 Evolutionary architectures

